Publications:
Metal clusters in the global carbon and nitrogen cycles

  1. Alayoglu, P.; Lorenzo Ocampo, M. V.; Wang, Z.; Chang, T.; Chen, Y.-S.; Liu, M.; Murray, L. J; Mankad, N. P. Electronic Desymmetrization of Cu33-E) Clusters (E = S, Se) Induced by Edge-to-Face π-Stacking Interactions in the Second Coordination Sphere. Inorganic Chemistry, ASAP, https://doi.org/10.1021/acs.inorgchem.4c04576
  2. Basu, D.; Yan, C.; Mankad, N. P. Synthetic Challenges toward Modeling Formate Dehydrogenases Using [WVI≡S] Complexes Supported by a Tetradentate [N2S2]4– Ligand. Inorganic Chemistry 202463, 19738–19743. https://doi.org/10.1021/acs.inorgchem.4c02922
  3. Alayoglu, P.; Rathnayaka, S. C.; Cheng, T.; Wang, S. G.; Chen, Y.-S.; Mankad, N. P. Cu site differentiation in tetracopper(I) sulfide clusters enables biomimetic N2O reduction. Chemical Science 202415, 13668-13675. https://doi.org/10.1039/D4SC00701H
  4. Tanriover, B.; Subasinghe, S. M. S.; Mankad, N. P. Selective and Efficient Detoxification of Sulfur Mustard Gas Analogues with H2O2 Using Bioinspired Mo and W Dithiolene Catalysts. ACS Catalysis 202414, 9323–9327. https://doi.org/10.1021/acscatal.4c01979 (First appeared as preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2024-32t9j)
  5. Mankad, N. P. Triazenide-supported [Cu4S] structural mimics of CuZ that mediate N2O disproportionation rather than reduction. Chemical Science 202415, 1820-1828. https://doi.org/10.1039/D3SC05451A
  6. Alayoglu, P.; Chang, T.; Lorenzo Ocampo, M. V.; Murray, L. J.; Chen, Y.-S.; Mankad, N. P. Metal Site-Specific Electrostatic Field Effects on a Tricopper(I) Cluster Probed by Resonant Diffraction Anomalous Fine Structure (DAFS). Inorganic Chemistry 202362, 15267-15276. https://doi.org/10.1021/acs.inorgchem.3c02472 (First appeared as a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2023-h1dxg)
  7. Basu, D.; Subasinghe, S. M. S.; Mankad, N. P. Reactivity of a Dithiocarbamate-Ligated [WVI≡S] Complex with Hydride Donors: Toward a Synthetic Mimic of Formate Dehydrogenase. Inorganic Chemistry 2023, 62, 6332-6338. https://doi.org/10.1021/acs.inorgchem.3c00086
  8. Rathnayaka, S. C.; Mankad, N. P. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coordination Chemistry Reviews 2021, 429, 213718. https://doi.org/10.1016/j.ccr.2020.213718
  9. Mankad, N. P. Learning from Nature: Bio-inspired Heterobinuclear Electrocatalysts for Selective CO2 Reduction. Trends in Chemistry 20213, 159-160. https://doi.org/10.1016/j.trechm.2020.12.002
  10. Ghosh, D.; Sinhababu, S.; Santarsiero, B. D.; Mankad, N. P. A W/Cu synthetic model for the Mo/Cu cofactor of aerobic CODH indicates that biochemical CO oxidation requires a frustrated Lewis acid/base pair. Journal of the American Chemical Society 2020, 142, 12635-12642. https://doi.org/10.1021/jacs.0c03343
    * Highlight in JACS Spotlights
  11. Rathnayaka, S. C.; Hsu, C.-W.; Johnson, B. J.; Iniguez, S. J.; Mankad, N. P. Impact of Electronic and Steric Changes of Ligands on the Assembly, Stability, and Redox Activity of Cu44-S) Model Compounds of the CuZActive Site of Nitrous Oxide Reductase (N2OR). Inorganic Chemistry 2020, 59, 6496-6507. https://doi.org/10.1021/acs.inorgchem.0c00564
  12. Rathnayaka, S. C.; Islam, S. M.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.*; Mankad, N. P.* Probing the Electronic and Mechanistic Roles of the µ4-Sulfur Atom in a Synthetic CuZ Model System.  Chemical Science 202011, 3441-3447. https://doi.org/10.1039/C9SC06251C
    * ChemSci Pick of the Week
    * ChemSci HOT Article

  13. Hsu, C.-W.; Rathnayaka, S. C.; Islam, S. M.; MacMillan, S. N.; Mankad, N. P. N2O Reductase Activity of a [Cu4S] Cluster in the 4CuI Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie, International Edition 202059, 627-631. https://doi.org/10.1002/anie.201906327
  14. Rathnayaka, S. C.; Lindeman, S. V.; Mankad, N. P. Multinuclear Cu(I) Clusters Featuring a New Triply Bridging Coordination Mode of Phosphaamidinate Ligands.  Inorganic Chemistry 201857, 9439-94454. https://doi.org/10.1021/acs.inorgchem.8b01422
  15. Bagherzadeh, S.; Mankad, N. P. Oxidation of a [Cu2S] Complex by N2O and CO2: Insights into a Role of Tetranuclearity in the CuZSite of Nitrous Oxide Reductase.  Chemical Communications 201854, 1097-1100. https://doi.org/10.1039/C7CC09067F
  16. Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Graham, M. J.; Mankad, N. P. A 1-hole Cu4S cluster with N2O reductase activity: a structural and functional model for CuZ*.  Journal of the American Chemical Society 2016138, 13107–13110. https://doi.org/10.1021/jacs.6b05480
  17. Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Mankad, N. P. A Cu4S Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands.  Chemical Communications 201551, 11860–11863. https://doi.org/10.1039/C5CC04675K
  18. Johnson, B. J.; Lindeman, S. V.; Mankad, N. P. Assembly, Structure, and Reactivity of Cu4S and Cu3S Models for the Nitrous Oxide Reductase Active Site, CuZ*.  Inorganic Chemistry 201453, 10611–10619. https://doi.org/10.1021/ic501720h
Department of Chemistry
footer logo