Publications:
Full List (No Graphics)

  1. Tung, P.; Mankad, N. P. Photochemical Synthesis of Acyl Fluorides Using Copper-Catalyzed Fluorocarbonylation of Alkyl Iodides. Organic Letters 2024ASAPhttps://doi.org/10.1021/acs.orglett.4c00967 (First appeared as preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2023-fjtf1)
  2. Sinhababu, S.; Singh, R. P.; Radzhabov, M. R.; Kumawat, J.; Ess, D. H.; Mankad, N. P. Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical. Nature Communications 202415, 1315. https://doi.org/10.1038/s41467-024-45721-1
  3. Mankad, N. P. Triazenide-supported [Cu4S] structural mimics of CuZ that mediate N2O disproportionation rather than reduction. Chemical Science 202415, 1820-1828. https://doi.org/10.1039/D3SC05451A 
  4. Alayoglu, P.; Chang, T.; Yan, C.; Chen, Y.-S.; Mankad, N. P. Uncovering a CF3 Effect on X-ray Absorption Energies of [Cu(CF3)4]- and Related Cu Compounds Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements. Angewandte Chemie, International Edition 2023, e202313744. https://doi.org/10.1002/anie.202313744 (First appeared as preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2023-klcfp)
  5. Radzhabov, M. R.; Mankad, N. P. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chemical Communications 2023, 59, 11932-11946. https://doi.org/10.1039/D3CC03078D
  6. Singh, R. P.; Sinhababu, S.; Mankad, N. P. Aluminum-Containing Heterobimetallic Complexes as Versatile Platforms for Homogeneous Catalysis. ACS Catalysis 202313, 12519–12542. https://doi.org/10.1021/acscatal.3c03315 
  7. Subasinghe, S. M. S.; Mankad, N. P. Predictive models for metal-metal bond dissociation free energies between aluminum(III) and a series of transition metal carbonyls. Polyhedron 2023, 245, 116637. https://doi.org/10.1016/j.poly.2023.116637.
    *Special issue on Metal–Metal bonds involving main group metals
  8. Alayoglu, P.; Chang, T.; Lorenzo Ocampo, M. V.; Murray, L. J.; Chen, Y.-S.; Mankad, N. P. Metal Site-Specific Electrostatic Field Effects on a Tricopper(I) Cluster Probed by Resonant Diffraction Anomalous Fine Structure (DAFS). Inorganic Chemistry 202362, 15267-15276. https://doi.org/10.1021/acs.inorgchem.3c02472 (First appeared as a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2023-h1dxg)
  9. Radzhabov, M. R.; Mankad, N. P. Fe-Promoted C–F Activation of Aryl Fluorides Enables Heck-Type Coupling with Alkenes and One-Pot Synthesis of Indenes. Organometallics 2023, 42, 2111–2121. https://doi.org/10.1021/acs.organomet.3c00256 (First appeared as a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2023-0phkg)
  10. Tung, P.; Mankad, N. P. Light-Mediated Synthesis of Aliphatic Anhydrides by Cu-Catalyzed Carbonylation of Alkyl Halides. Journal of the American Chemical Society 2023, 145, 9423-9427. https://doi.org/10.1021/jacs.3c01224 (First appeared as a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2022-gthrk-v2)
    *Entry in Organic Chemistry Portal
  11. Basu, D.; Subasinghe, S. M. S.; Mankad, N. P. Reactivity of a Dithiocarbamate-Ligated [WVI≡S] Complex with Hydride Donors: Toward a Synthetic Mimic of Formate Dehydrogenase. Inorganic Chemistry 2023, 62, 6332-6338. https://doi.org/10.1021/acs.inorgchem.3c00086
  12. Markut, J. J.; Cabana, J.; Mankad, N. P.; Wink, D. J. A Collaborative Model-Based Symmetry Activity for the Inorganic Chemistry Laboratory. Journal of Chemical Education 2023, 100, 1633-1640. https://doi.org/10.1021/acs.jchemed.3c00037
  13. Tung, P.; Mankad, N. P. Cu-Catalyzed C–C Bond Formation with CO. In Topics in Organometallic Chemistry, vol. 93, Springer, Berlin, Heidelberg 2023, pp. 255-275. https://doi.org/10.1007/3418_2023_84
  14. Sinhababu, S.; Mankad, N. P. Diverse Thermal and Photochemical Reactivity of an Al–Fe Bonded Heterobimetallic Complex. Organometallics 2022, 41, 15, 1917–1921. https://doi.org/10.1021/acs.organomet.2c00280 (Portions first appeared in a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2021-xt242)
  15. Sinhababu, S.; Lakliang, Y.; Mankad, N. P. Recent advances in cooperative activation of CO2 and N2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Transactions 202251, 6129-6147. https://doi.org/10.1039/D2DT00210H 
  16. Sinhababu, S.; Radzhabov, M. R.; Telser, J.; Mankad, N. P. Cooperative Activation of CO2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. Journal of the American Chemical Society 2022144, 3210-3221. https://doi.org/10.1021/jacs.1c13108 (Portions first appeared in a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2021-xt242)
  17. Tung, P.; Schuhmacher, A.; Schilling, P.; Bode, J. W.; Mankad, N. P. Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copper-Catalyzed Borylation of Mixed Anhydrides. Angewandte Chemie, International Edition, 2022, 61, e202114513. https://doi.org/10.1002/anie.202114513 (First appeared as preprint on ChemRxiv, https://doi.org/10.33774/chemrxiv-2021-jt414)
  18. Yu, H.-C.; Telser, J.; Mankad, N. P. Synthesis and Characterization of Heteromultinuclear Ni/M Clusters (M = Fe, Ru, W) Including a Paramagnetic (NHC)Ni–WCp*(CO)3 Heterobinuclear Complex. Organometallics 2021, 40, 2123-2132. https://doi.org/10.1021/acs.organomet.1c00263
  19. Cheng, L.-J.; Mankad, N. P. Copper-Catalyzed Carbonylative Coupling of Alkyl Halides. Accounts of Chemical Research 2021, 54, 2261-2274. https://doi.org/10.1021/acs.accounts.1c00115
  20. Radzhabov, M. R.; Mankad, N. P. Cobalt-Catalyzed (E)-β-Selective Hydrogermylation of Terminal Alkynes. Organic Letters 2021, 23, 3221-3226. https://doi.org/10.1021/acs.orglett.1c00928 (First appeared as preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv.14138684.v1)
  21. Rathnayaka, S. C.; Mankad, N. P. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coordination Chemistry Reviews 2021, 429, 213718. https://doi.org/10.1016/j.ccr.2020.213718
  22. Yu, H.-C.; Mankad, N. P. Catalytic Reactions by Heterobimetallic Carbonyl Complexes with Polar Metal-Metal Interactions. Synthesis 2021, 53, 1409-1422. https://doi.org/10.1055/a-1339-3417
  23. Mankad, N. P. Learning from Nature: Bio-inspired Heterobinuclear Electrocatalysts for Selective CO2 Reduction. Trends in Chemistry 2021, 3, 159-160. https://doi.org/10.1016/j.trechm.2020.12.002
  24. Cheng, L.-J.; Zhao, S.; Mankad, N. P. One-Step Synthesis of Acylboron Compounds via Cu-Catalyzed Carbonylative Borylation of Alkyl Halides. Angewandte Chemie, International Edition 2021, 60, 2094-2098. https://doi.org/10.1002/anie.202012373. (First appeared as preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv.12818180.v1.)
    *ACIE Hot Paper
  25. Ghosh, D.; Sinhababu, S.; Santarsiero, B. D.; Mankad, N. P. A W/Cu synthetic model for the Mo/Cu cofactor of aerobic CODH indicates that biochemical CO oxidation requires a frustrated Lewis acid/base pair. Journal of the American Chemical Society 2020, 142, 12635-12642. https://doi.org/10.1021/jacs.0c03343
    *Highlight in JACS Spotlights
  26. Cheng, L.-J.; Mankad, N. P. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chemical Society Reviews 2020, 49, 8036-8064. https://doi.org/10.1039/D0CS00316F
    *Special themed issue: 2020 Emerging Investigators
    *Special themed issue: Earth Abundant Metals in Catalysis
  27. Lakliang, Y.; Mankad, N. P. Heterometallic Cu2Fe and Zn2Fe2 Complexes Derived from [Fe(CO)4]2–and Cu/Fe Bifunctional N2O Activation Reactivity. Organometallics 2020, 39, 2043-2046. https://doi.org/10.1021/acs.organomet.0c00212
  28. Rathnayaka, S. C.; Hsu, C.-W.; Johnson, B. J.; Iniguez, S. J.; Mankad, N. P. Impact of Electronic and Steric Changes of Ligands on the Assembly, Stability, and Redox Activity of Cu44-S) Model Compounds of the CuZActive Site of Nitrous Oxide Reductase (N2OR). Inorganic Chemistry 2020, 59, 6496-6507. https://doi.org/10.1021/acs.inorgchem.0c00564
  29. Yu, H.-C.; Islam, S. M.; Mankad, N. P. Cooperative heterobimetallic substrate activation enhances catalytic activity and amplifies regioselectivity in 1,4-hydroboration of pyridines. ACS Catalysis 202010, 3670-3675. https://doi.org/10.1021/acscatal.0c00515
  30. Rathnayaka, S. C.; Islam, S. M.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.*; Mankad, N. P.* Probing the Electronic and Mechanistic Roles of the µ4-Sulfur Atom in a Synthetic CuZ Model System. Chemical Science 202011, 3441-3447. https://doi.org/10.1039/C9SC06251C
    *ChemSci Pick of the Week
    *ChemSci HOT Article
  31. Cheng, L.-J.; Mankad, N. P. Cu-Catalyzed Carbonylative Silylation of Alkyl Halides: Efficient Access to Acylsilanes. Journal of the American Chemical Society 2020142, 80-84. https://doi.org/10.1021/jacs.9b12043
    *Highlight in Synfacts by M. Lautens & R. Ross
    *Entry in Organic Chemistry Portal
  32. Hsu, C.-W.; Rathnayaka, S. C.; Islam, S. M.; MacMillan, S. N.; Mankad, N. P. N2O Reductase Activity of a [Cu4S] Cluster in the 4CuI Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie, International Edition 202059, 627-631. https://doi.org/10.1002/anie.201906327
  33. Zhao, S.; Mankad, N. P. Synergistic Copper-Catalyzed Reductive Aminocarbonylation of Alkyl Iodides with Nitroarenes. Organic Letters 201921, 10106-10110. https://doi.org/10.1021/acs.orglett.9b04092
    *Entry in Organic Chemistry Portal
  34. Leon, N. J.; Yu, H.-C.; Mazzacano, T. J.; Mankad, N. P. Pursuit of C–H Borylation Reactions with Non-Precious Heterobimetallic Catalysts: Hypothesis-Driven Variations on a Design Theme. Synlett 2020, 31, 125-132. https://doi.org/10.1055/s-0039-1691504
    *Account
  35. Zhao, S.; Mankad, N. P. Metal-Catalysed Radical Carbonylation Reactions. Catalysis Science & Technology 20199, 3603-3613. https://doi.org/10.1039/C9CY00938H
    *Mini-review
  36. Zhang, Y.; Karunananda, M. K.; Yu, H.-C.; Clark, K. J.; Williams, W.; Mankad, N. P.*; Ess, D. H.* Dynamically Bifurcating Hydride Transfer Mechanism and Origin of Inverse Isotope Effect for Heterodinuclear AgRu-Catalyzed Alkyne Semi-Hydrogenation. ACS Catalysis 20199, 2657-2663. https://doi.org/10.1021/acscatal.8b04130
  37. Cheng, L.-J.; Mankad, N. P. Heterobimetallic Control of Regioselectivity in Alkyne Hydrostannylation: Divergent Syntheses of α- and (E)βVinylstannanes via Cooperative Sn–H Bond Activation. Journal of the American Chemical Society 2019141, 3710-3716. https://doi.org/10.1021/jacs.9b00068
    *Entry in Organic Chemistry Portal
  38. Leon, N. J.; Yu, H.-C.; Mazzacano, T. J.; Mankad, N. P. Mixed Phosphine/Carbonyl Derivatives of Heterobimetallic Copper-Iron and Copper-Tungsten Catalysts. Polyhedron 20191, 116-123. https://doi.org./10.1016/j.poly.2018.09.062
    *Special Issue for Bill Jones 65th Birthday
  39. Rathnayaka, S. C.; Lindeman, S. V.; Mankad, N. P. Multinuclear Cu(I) Clusters Featuring a New Triply Bridging Coordination Mode of Phosphaamidinate Ligands. Inorganic Chemistry 201857, 9439-94454. https://doi.org/10.1021/acs.inorgchem.8b01422
  40. Cheng, L.-J.; Mankad, N. P. Copper‐Catalyzed Borocarbonylative Coupling of Internal Alkynes with Unactivated Alkyl Halides: Modular Synthesis of Tetrasubstituted β‐Borylenones. Angewandte Chemie, International Edition 201857, 10328-10332. https://doi.org/10.1002/anie.201804883
  41. Zhao, S.; Mankad, N. P. Cu-catalyzed Hydroxymethylation of Unactivated Alkyl Iodides with CO to Provide One Carbon Extended Alcohols. Angewandte Chemie, International Edition 201857, 10328-10332. https://doi.org/10.1002/anie.201801814
  42. Mankad, N. P. Diverse Bimetallic Mechanisms Emerging from Transition Metal Lewis Acid/Base Pairs: Development of Co-catalysis with Metal Carbenes and Metal Carbonyl Anions. Chemical Communications 201854, 1291-1302. https://doi.org/10.1039/C7CC09675E
    *Feature Article
  43. Bagherzadeh, S.; Mankad, N. P. Oxidation of a [Cu2S] Complex by N2O and CO2: Insights into a Role of Tetranuclearity in the CuZSite of Nitrous Oxide Reductase. Chemical Communications 201854, 1097-1100. https://doi.org/10.1039/C7CC09067F
  44. Cheng, L.-J.; Islam, S. M.; Mankad, N. P. Synthesis of Allylic Alcohols via Cu-Catalyzed Hydrocarbonylative Coupling of Alkynes with Alkyl Halides. Journal of the American Chemical Society 2018140, 1159-1164. https://doi.org/10.1021/jacs.7b12582
  45. Karunananda, M. K.; Mankad, N. P. Cooperative Strategies for Catalytic Hydrogenation of Unsaturated Hydrocarbons. ACS Catalysis 20177, 6110-6119. https://doi.org/10.1021/acscatal.7b02203
    *Perspective article
  46. Cheng, L.-J.; Mankad, N. P. Cu-Catalyzed Hydrocarbonylative C-C Coupling of Terminal Alkynes with Alkyl Iodides. Journal of the American Chemical Society 2017139, 10200-10203. https://doi.org/10.1021/jacs.7b05205
    *Entry in Organic Chemistry Portal
  47. Pye. D. R.; Cheng. L.-J.; Mankad, N. P. Cu/Mn Bimetallic Catalysis Enables Carbonylative Suzuki-Miyaura Coupling with Unactivated Alkyl Electrophiles. Chemical Science 20178, 4750-4755. https://doi.org/10.1039/C7SC01170A
    *Cover article
  48. Pye, D. R.; Mankad, N. P. Bimetallic Catalysis for C-C and C-X Coupling Reactions. Chemical Science 20178, 1705-1718. https://doi.org/10.1039/C6SC05556G
    *Cover article
    *Perspective article
    *Top 5% most highly cited RSC article in 2018
  49. Mazzacano, T. J.; Leon, N. J.; Waldhart, G. W.; Mankad, N. P. Fundamental organometallic chemistry under bimetallic influence: driving β-hydride elimination and diverting migratory insertion at Cu and Ni. Dalton Transactions 201746, 5518-5521. https://doi.org/10.1039/C6DT04533B
    *Cover article
    *Special themed issue: Multimetallic complexes: synthesis and applications
  50. Karunananda, M. K.; Mankad, N. P. Heterobimetallic H2 Addition and Alkene/Alkane Elimination Reactions Related to the Mechanism of E-Selective Alkyne Semihydrogenation. Organometallics 201736, 2200-2207. https://doi.org/10.1021/acs.organomet.6b00356
    *Special Issue: Hydrocarbon Chemistry: Activation and Beyond
  51. Mazzacano, T. J.; Mankad, N. P. Dehydrogenative Borylation and Silylation of Styrenes Catalyzed by Copper-Carbenes. ACS Catalysis 20166, 146-149. https://doi.org/10.1021/acscatal.6b02594
  52. Waldhart, G. W.; Mankad, N. P.*; Santarsiero, B. D.* Improvements to the Practical Usability of the ‘Crystalline Sponge’ Method for Organic Structure Determination. Organic Letters 201618, 6112-6115. https://doi.org/10.1021/acs.orglett.6b03119
    *Highlight in C&E News Science Concentrates
  53. Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Graham, M. J.; Mankad, N. P. A 1-hole Cu4S cluster with N2O reductase activity: a structural and functional model for CuZ*. Journal of the American Chemical Society 2016138, 13107–13110. https://doi.org/10.1021/jacs.6b05480
  54. Mankad, N. P. Selectivity Effects in Bimetallic Catalysis. Chemistry – A European Journal 201622, 5822–5829. https://doi.org/10.1002/chem.201505002
    *Concepts Article
  55. Bagherzadeh, S.; Mankad, N. P. Extremely Efficient Hydroboration of Ketones and Aldehydes by Copper Carbene Catalysis. Chemical Communications 201652, 3844–3846. https://doi.org/10.1039/C5CC09162D
    *Top 5% most highly cited RSC article in 2018
  56. Karunananda, M. K.; Mankad, N. P. E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis. Journal of the American Chemical Society 2015137, 14598–14601. https://doi.org/10.1021/jacs.5b10357
  57. Parmelee, S. R.; Mankad, N. P. A Data-Intensive Re-Evaluation of Semibridging Carbonyl Ligands. Dalton Transactions 201544, 17007–17014. https://doi.org/10.1039/C5DT02813B
    *Perspective article
  58. Bagherzadeh, S.; Mankad, N. P. Catalyst Control of Selectivity in CO2 Reduction Using a Tunable Heterobimetallic Effect. Journal of the American Chemical Society 2015137, 10898–10901. https://doi.org/10.1021/jacs.5b05692
  59. Karunananda, M. K.; Parmelee, S. R.; Waldhart, G. W.; Mankad, N. P. Experimental and Computational Characterization of the Transition State for C-X Bimetallic Oxidative Addition at a Cu-Fe Reaction Center. Organometallics 201534(15), 3857–3864. https://doi.org/10.1021/acs.organomet.5b00476
  60. Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Mankad, N. P. A Cu4S Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands. Chemical Communications 201551, 11860–11863. https://doi.org/10.1039/C5CC04675K
  61. Parmelee, S. R.; Mazzacano, T. J.; Mankad, N. P.*; Keith, J. A.* A Heterobimetallic Mechanism for C–H Borylation Elucidated from Experimental and Computational Data. ACS Catalysis 20155, 3689–3699. https://doi.org/10.1021/acscatal.5b00275
  62. Waldhart, G. W.; Mankad, N. P. Photochemical Heck Benzylation of Styrenes Catalyzed by Na[FeCp(CO)2]. Journal of Organometallic Chemistry 2015793, 171–174. https://doi.org/10.1016/j.jorganchem.2014.12.033
    *Special Issue: Functionalization of C-H Bonds with Applications in Catalysis Dedicated to Professor Shilov in Memoriam
  63. Mazzacano, T. J.; Mankad, N. P. Stoichiometric C–H Borylation with a CO-free Iron Boryl Complex. Chemical Communications201551, 5379–5382. https://doi.org/10.1039/C4CC09180A
    *Special Issue: ChemComm Emerging Investigators 2015
  64. Banerjee, S.; Karunananda, M. K.; Bagherzadeh, S.; Jayarathne, U.; Parmelee, S. R.; Waldhart, G. W.; Mankad, N. P. Synthesis and Characterization of Heterobimetallic Complexes with Direct Cu–M Bonds (M = Cr, Mn, Co, Mo, Ru, W) Supported by N-Heterocyclic Carbene Ligands: A Toolkit for Catalytic Reaction Discovery. Inorganic Chemistry 201453, 11307–11315. https://doi.org/10.1021/ic5019778
  65. Johnson, B. J.; Lindeman, S. V.; Mankad, N. P. Assembly, Structure, and Reactivity of Cu4S and Cu3S Models for the Nitrous Oxide Reductase Active Site, CuZ*. Inorganic Chemistry 201453, 10611–10619. https://doi.org/10.1021/ic501720h
  66. Karunananda, M. K.; Alp, E. E.; Bi, W.; Chattopadhyay, S.; Shibata, T.; Mankad, N. P. Experimental Determination of Metal-Metal Redox Cooperativity and Electronic Structure in Catalytically Active Cu-Fe and Zn-Fe Heterobimetallic Complexes. Dalton Transactions 201443, 13361–13671. https://doi.org/10.1039/C4DT01841A
  67. Jayarthne, U.; Parmelee, S. R.; Mankad, N. P. Small Molecule Activation Chemistry of Cu-Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorganic Chemistry 201453, 7730–7737. https://doi.org/10.1021/ic501054z
  68. Mankad, N. P. Non-precious metal catalysts for C-H borylation enabled by metal-metal cooperativity. Synlett 201425, 1197–1201. https://doi.org/10.1055/s-0033-1340823
    *SYNPACTS article
  69. Waldhart, G. W.; Mankad, N. P. trans-Tetracarbonylbis(triphenylphosphane-κP)molybdenum(0). Acta Crystallographica 2014E70, m36. https://doi.org/10.1107/S1600536814000300
  70. Mazzacano, T. J.; Mankad, N. P. Base Metal Catalysts For Photochemical C–H Borylation That Utilize Metal-Metal Cooperativity. Journal of the American Chemical Society 2013135, 17258–17261. https://doi.org/10.1021/ja408861p
    *Cover article
    *Highlight in JACS Spotlights
  71. Jayarathne, U.; Mazzacano, T. J.; Bagherzadeh, S.; Mankad, N. P. Heterobimetallic Complexes with Polar, Unsupported Cu–Fe and Zn–Fe Bonds Stabilized by N-Heterocyclic Carbenes. Organometallics 201332, 3986–3992. https://doi.org/10.1021/om400471u
Department of Chemistry
footer logo