Publications:
Development of Heterobinuclear Catalysis
Subasinghe, S. M. S.; Radzhabov, M. R.; Mankad, N. P. Predictive Models for Ligand Effects on a Reactive Al-Containing Radical Intermediate from Multivariate Linear Regression Analysis. Organometallics 2024, ASAP, https://doi.org/10.1021/acs.organomet.4c00285
Singh, R. P.; Mankad, N. P. Frustrated Al/M Heterobimetallic Complexes (M = Cr, Mo, W) That Exhibit Both Lewis and Radical Pair Behavior. Inorganic Chemistry2024, 63, 18933–18944. https://doi.org/10.1021/acs.inorgchem.4c03276
Subasinghe, S. M. S.; Mankad, N. P. Lessons from recent theoretical treatments of Al-M bonds (M = Fe, Cu, Ag, Au) that capture CO2. Dalton Transactions2024, 53, 13709-13715. https://doi.org/10.1039/D4DT02018A
*HOT article
Mankad, N. P.; Roland, S.; Sollogoub, M.; Stevens, J. E. Supramolecular Perturbation of Metal–Metal Bonding in Cyclodextrin-Encapsulated (NHC)Cu-FeCp(CO)2 Complexes. Organometallics2024, 43, 1165–1171. https://doi.org/10.1021/acs.organomet.4c00105
Sinhababu, S.; Singh, R. P.; Radzhabov, M. R.; Kumawat, J.; Ess, D. H.; Mankad, N. P. Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical. Nature Communications2024, 15, 1315. https://doi.org/10.1038/s41467-024-45721-1
Singh, R. P.; Sinhababu, S.; Mankad, N. P. Aluminum-Containing Heterobimetallic Complexes as Versatile Platforms for Homogeneous Catalysis. ACS Catalysis2023, 13, 12519–12542. https://doi.org/10.1021/acscatal.3c03315
Sinhababu, S.; Lakliang, Y.; Mankad, N. P. Recent advances in cooperative activation of CO2 and N2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Transactions 2022, 51, 6129-6147. https://doi.org/10.1039/D2DT00210H
Sinhababu, S.; Radzhabov, M. R.; Telser, J.; Mankad, N. P. Cooperative Activation of CO2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. Journal of the American Chemical Society 2022, 144, 3210-3221. https://doi.org/10.1021/jacs.1c13108 (Portions first appeared in a preprint on ChemRxiv, https://doi.org/10.26434/chemrxiv-2021-xt242)
Yu, H.-C.; Telser, J.; Mankad, N. P. Synthesis and Characterization of Heteromultinuclear Ni/M Clusters (M = Fe, Ru, W) Including a Paramagnetic (NHC)Ni–WCp*(CO)3 Heterobinuclear Complex. Organometallics2021, 40, 2123-2132. https://doi.org/10.1021/acs.organomet.1c00263
Yu, H.-C.; Mankad, N. P. Catalytic Reactions by Heterobimetallic Carbonyl Complexes with Polar Metal-Metal Interactions. Synthesis2021, 53, 1409-1422. https://doi.org/10.1055/a-1339-3417
Lakliang, Y.; Mankad, N. P. Heterometallic Cu2Fe and Zn2Fe2 Complexes Derived from [Fe(CO)4]2–and Cu/Fe Bifunctional N2O Activation Reactivity. Organometallics2020, 39, 2043-2046. https://doi.org/10.1021/acs.organomet.0c00212
Yu, H.-C.; Islam, S. M.; Mankad, N. P. Cooperative heterobimetallic substrate activation enhances catalytic activity and amplifies regioselectivity in 1,4-hydroboration of pyridines. ACS Catalysis2020, 10, 3670-3675. https://doi.org/10.1021/acscatal.0c00515
Leon, N. J.; Yu, H.-C.; Mazzacano, T. J.; Mankad, N. P. Pursuit of C–H Borylation Reactions with Non-Precious Heterobimetallic Catalysts: Hypothesis-Driven Variations on a Design Theme. Synlett2020, 31, 125-132. https://doi.org/10.1055/s-0039-1691504
*Account
Zhang, Y.; Karunananda, M. K.; Yu, H.-C.; Clark, K. J.; Williams, W.; Mankad, N. P.*; Ess, D. H.* Dynamically Bifurcating Hydride Transfer Mechanism and Origin of Inverse Isotope Effect for Heterodinuclear AgRu-Catalyzed Alkyne Semi-Hydrogenation. ACS Catalysis2019, 9, 2657-2663. https://doi.org/10.1021/acscatal.8b04130
Cheng, L.-J.; Mankad, N. P. Heterobimetallic Control of Regioselectivity in Alkyne Hydrostannylation: Divergent Syntheses of α- and (E)–β–Vinylstannanes via Cooperative Sn–H Bond Activation.Journal of the American Chemical Society2019, 141, 3710-3716. https://doi.org/10.1021/jacs.9b00068
*Entry in Organic Chemistry Portal*
Leon, N. J.; Yu, H.-C.; Mazzacano, T. J.; Mankad, N. P. Mixed Phosphine/Carbonyl Derivatives of Heterobimetallic Copper-Iron and Copper-Tungsten Catalysts. Polyhedron 2019, 1, 116-123. https://doi.org/10.1016/j.poly.2018.09.062
*Special Issue for Bill Jones 65th Birthday*
Mankad, N. P. Diverse Bimetallic Mechanisms Emerging from Transition Metal Lewis Acid/Base Pairs: Development of Co-catalysis with Metal Carbenes and Metal Carbonyl Anions. Chemical Communications2018, 54, 1291-1302. https://doi.org/10.1039/C7CC09675E
*Feature Article*
Karunananda, M. K.; Mankad, N. P. Cooperative Strategies for Catalytic Hydrogenation of Unsaturated Hydrocarbons. ACS Catalysis2017, 7, 6110-6119. https://doi.org/10.1021/acscatal.7b02203
*Perspective Article*
Pye. D. R.; Cheng. L.-J.; Mankad, N. P. Cu/Mn Bimetallic Catalysis Enables Carbonylative Suzuki-Miyaura Coupling with Unactivated Alkyl Electrophiles. Chemical Science2017, 8, 4750-4755. https://doi.org/10.1039/C7SC01170A
*Cover article
Pye, D. R.; Mankad, N. P. Bimetallic Catalysis for C-C and C-X Coupling Reactions. Chemical Science2017, 8, 1705-1718. https://doi.org/10.1039/C6SC05556G Cover article
*Perspective article*
Top 5% most highly cited RSC article in 2018
Mankad, N. P. Selectivity Effects in Bimetallic Catalysis. Chemistry – A European Journal2016, 22, 5822–5829. https://doi.org/10.1002/chem.201505002
*Concepts Article
Karunananda, M. K.; Mankad, N. P. E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis. Journal of the American Chemical Society2015, 137, 14598–14601. https://doi.org/10.1021/jacs.5b10357
Parmelee, S. R.; Mankad, N. P. A Data-Intensive Re-Evaluation of Semibridging Carbonyl Ligands. Dalton Transactions2015, 44, 17007–17014. https://doi.org/10.1039/C5DT02813B
*Perspective article
Bagherzadeh, S.; Mankad, N. P. Catalyst Control of Selectivity in CO2 Reduction Using a Tunable Heterobimetallic Effect. Journal of the American Chemical Society2015, 137, 10898–10901. https://doi.org/10.1021/jacs.5b05692
Karunananda, M. K.; Parmelee, S. R.; Waldhart, G. W.; Mankad, N. P. Experimental and Computational Characterization of the Transition State for C-X Bimetallic Oxidative Addition at a Cu-Fe Reaction Center. Organometallics2015, 34(15), 3857–3864. https://doi.org/10.1021/acs.organomet.5b00476
Parmelee, S. R.; Mazzacano, T. J.; Mankad, N. P.*; Keith, J. A.* A Heterobimetallic Mechanism for C–H Borylation Elucidated from Experimental and Computational Data. ACS Catalysis2015, 5, 3689–3699. https://doi.org/10.1021/acscatal.5b00275
Banerjee, S.; Karunananda, M. K.; Bagherzadeh, S.; Jayarathne, U.; Parmelee, S. R.; Waldhart, G. W.; Mankad, N. P. Synthesis and Characterization of Heterobimetallic Complexes with Direct Cu–M Bonds (M = Cr, Mn, Co, Mo, Ru, W) Supported by N-Heterocyclic Carbene Ligands: A Toolkit for Catalytic Reaction Discovery. Inorganic Chemistry2014, 53, 11307–11315. https://doi.org/10.1021/ic5019778
Karunananda, M. K.; Alp, E. E.; Bi, W.; Chattopadhyay, S.; Shibata, T.; Mankad, N. P. Experimental Determination of Metal-Metal Redox Cooperativity and Electronic Structure in Catalytically Active Cu-Fe and Zn-Fe Heterobimetallic Complexes. Dalton Transactions2014, 43, 13361–13671. https://doi.org/10.1039/C4DT01841A
Jayarthne, U.; Parmelee, S. R.; Mankad, N. P. Small Molecule Activation Chemistry of Cu-Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorganic Chemistry2014, 53, 7730–7737. https://doi.org/10.1021/ic501054z
Mankad, N. P. Non-precious metal catalysts for C-H borylation enabled by metal-metal cooperativity. Synlett2014, 25, 1197–1201. https://doi.org/10.1055/s-0033-1340823
*SYNPACTS article
Mazzacano, T. J.; Mankad, N. P. Base Metal Catalysts For Photochemical C–H Borylation That Utilize Metal-Metal Cooperativity. Journal of the American Chemical Society2013, 135, 17258–17261. https://doi.org/10.1021/ja408861p
* Cover article
* Highlight in JACS Spotlights
Jayarathne, U.; Mazzacano, T. J.; Bagherzadeh, S.; Mankad, N. P. Heterobimetallic Complexes with Polar, Unsupported Cu–Fe and Zn–Fe Bonds Stabilized by N-Heterocyclic Carbenes. Organometallics2013, 32, 3986–3992. https://doi.org/10.1021/om400471u
Mankad Group
-- We can do with two metals
what you can do with one --